
Command Processing
And Other Stu�

Gordon Watts
6-6-97

Online Meeting

� Command Processing

� Level-3 Monitor Data

� Errors

� Logs

You can �nd all of this talk on WWW:

http://d0sgi0.fnal.gov/ gwatts/talks/

Command Classes

First a little context (D�SNTY):

From
Level-3

To Host
SystemThread Thread Thread

Data
Token

Command
Processor Commands & Querie

from other systems

D0Snty

�Many threaded application

� Commands must interact
with threads

� Commands aren't part of threads

Command Types

� Slow Commands

{ Wait for program to complete
operation before disconnecting

{ Sometimes very long operations
(seconds or minutes?).

{ Example: Reset/Restart, Empty
Queues, etc.

� Quick Commands

{ Never requires interacting or
blocking another thread

{ Start a operation but don't wait for
its completion

{ Examples: Quit as soon as empty,
How many events processed?

Slow Commands should not block
Quick Commands

Other Requirements

� Command library is independent of
I/O method

{ TCP/IP, D�IP, Named Pipes, etc.

� Independent of format of input data
stream

{ text or binary

� Auto processing of incoming
commands

� Commands can have conversations
(context)

� Easy to use (Yeah, Right!).

Command Classes

Everything based around the command

class.

� Standard execute method

{ Takes a connection conversation as an
argument

� Scope is as long as command is active.

Command dispatch is done by the
command processor class.

�Maintains a list of command factory

classes

{ One command factory per command

�Methods to manage list (add/remove
commands).

� Knows about a connecton manager

Command Classes

One set for each command

run_command_factoryquick_command_factory

run_commandquick_command

created_by
>1

command

single

connection objects::connection_manager

list

command_factory

command_processor
(Not Registered Copy)

One set for each command

run_command_factoryquick_command_factory

run_commandquick_command

created_by
>1

command

single

connection objects::connection_manager

list

command_factory

command_processor

Connection Classes

The message is the abstract object passed
around

� Fed to and gotten from
a connection conversation

� Can block waiting for a new message

The connection manager keeps track of
connections.

�Waits for new connection to a port

� Blocks threads

Connection Classes

One set for every type of
connection text_message text_conversationtext_connection_manager

message

created_bycreated_by

connection_conversation

connection_manager

(Not Registered Copy)

One set for every type of
connection text_message text_conversationtext_connection_manager

message

created_bycreated_by

connection_conversation

connection_manager

Event Trace

Delete

Delete

NewNew

Delete

word

NewNew

word

Delete

New

word

Delete

New

Delete

message

Delete
delete

get_message

spawn_thread

cmd may return and
spawn new thread

execute

NewNew

execute spawn_thread

get_message

delete
Delete

Delete

Delete

New

execute spawn_thread

get_message

delete
Delete

Delete

Delete

command

create_command

is_this_your_commandis_this_your_command

create_command New

word
is_this_your_command

create_command New

word

command_factory

get_message

NewNew

get_message

get_message

delete

New

New

New

get_message

get_message

delete

New

New

connection_conversation

wait_for_new_connectionwait_for_new_connection
New

wait_for_new_connection

get_message

is_this_your_command

create_command

execute

wait_for_new_connection
New

connection_manager

wait_for_new_connection

get_message

is_this_your_command

create_command

execute

command_processor (Not Registered Copy)

Delete

Delete

NewNew

Delete

word

NewNew

word

Delete

New

word

Delete

New

Delete

message

Delete
delete

get_message

spawn_thread

cmd may return and
spawn new thread

execute

NewNew

execute spawn_thread

get_message

delete
Delete

Delete

Delete

New

execute spawn_thread

get_message

delete
Delete

Delete

Delete

command

create_command

is_this_your_commandis_this_your_command

create_command New

word
is_this_your_command

create_command New

word

command_factory

get_message

NewNew

get_message

get_message

delete

New

New

New

get_message

get_message

delete

New

New

connection_conversation

wait_for_new_connectionwait_for_new_connection
New

wait_for_new_connection

get_message

is_this_your_command

create_command

execute

wait_for_new_connection
New

connection_manager

wait_for_new_connection

get_message

is_this_your_command

create_command

execute

command_processor

You Call This Simple!?

� Helper templates and classes
for Text/Word based messages

� Build command factory automatically

� Actual command process loop is tight
and clean

�Must write the command subclass

Source Example

De�ne a new command:

class spit_cmd : public single_exchange_command {

public:

inline spit_cmd (void) {};

inline void execute_single_exchange

(const connection_message _cmd_text)

{std::cout << "this is junk" << std::endl;};

};

Main Program:

main ()

{

std::cout << "Hi there" << endl;

istream_connection_manager inputer (std::cin);

command_processor cmd (inputer);

cmd.add_command (new simple_command_factory<spit_cmd> ("spit"));

cmd.process_single_command();

std::cout << "Done" << endl;

}

What is there?

� All the command classes

� connection classes for tty input

� Next are classes for D�IP and NT
Named Pipes

� And a harsher test program

Level-3 Monitor Data

Level-3 will have data that needs to be
saved at the end of a run.

� Histograms (small), counters,
perhaps some physics information.

� Could be something like ntuples of
failed events (large data storage).

�Where should it go?

� How should it be handled?

� How big will it be?

Monitor Data Size

W
ha

t i
f w

e
w

ro
te

 N
tu

pl
es

 o
n

Fa
ile

d
Ev

en
ts

?

L2
 A

cc
ep

t R
at

e
(H

z)
10

00
%

 L
2

Ev
ts

 S
av

ed
10

LW
or

ds
 P

er
 E

ve
nt

4
D

at
a

St
or

ag
e

N
ee

ds

W
or

d/
se

c
ou

t o
f L

3
40

0
Ac

ce
l U

pt
im

e
(%

)
50

KB
yt

e/
se

c
ou

t o
f L

3
1.

56
25

Ye
ar

s
R

un
ni

ng
1

Le
ve

l3
 N

od
es

48
M

on
 D

at
a

(M
By

te
s)

24
06

0.
05

86
KB

yt
es

/s
ec

/N
od

e
0.

03
25

52
08

3
M

on
 D

at
a

(G
By

te
s)

23
.4

96
15

1

27
 G

D
is

ks
/y

ea
r

0.
87

02
27

81

Error Reporting

From the Level-3 Point of View:

� Same online and o�ine API

� High level API simple (like last time).

� Low level allow plug in reporters

{ Text output plug in

{ TCP/IP output plugin

{ L3 interface plugin

� Too complex?

Error Classes?

tty_notifieralarm_notifierlogfile_notifier

error_notifier

error_server

(Not Registered Copy)

tty_notifieralarm_notifierlogfile_notifier

error_notifier

error_server

Log Files

I have a fantasy... I have several actually...

�Get a call at 4am... Use browser to
see what the DAQ shifter did

{ Really tough { all logs must be ac-
cessible by a HTTP server.

� Every three months burn a CD with
all logs in HTML form

{ Indexed by Run

{ Indexed by Date

and then delete them!

Log Files con't

Common Format?

� Each line contain a time stamp

� Logs contains run start/end entries

� Log �les are periodically closed/new
one started (by run, by time?).

�Makes for ease of indexing.

If we supply the software for this, it
might be easy. A �ghting chance.

Log Files con't

Auto Handling?

� Built into the API auto close/open

{ Time

{ Run

� Autonoti�caton?

{ Log Manager Process

{ Copy log �les to common area

{ Interleave log entries for huge list?

{ Do it on HTTP request?

� Is API same as for errors?

Conclusions

� This is the �rst time I've used OO de-
sign tools

�Good to start with

� Can't keep up once you start coding

� Are the command classes useful?

� Errors and Loggers. Get them early,
we can have an integrated system

{ Just like the commands in the on-
line system.

